VERSION 2

JASPERSE CHEM 210 **PRACTICE TEST 2**

Ch. 14 Chemical Equilibria

Ch. 16 Acid-Base Equilibria

Key Equations:

 $[H^+][HO^-] = 1.00 \times 10^{-14}$ $pH = -\log[H^+]$ $[H^+] = 10^{-pH}$ pH + pOH = 14
$$\begin{split} K_{a} &= [H^{+}]^{2} / [HA]_{init} & [H^{\textcircled{+}}] = \sqrt{K_{a} \times [HA]_{init}} \\ K_{b} &= [OH^{-}]^{2} / [Base]_{init} & [HO^{\textcircled{-}}] = \sqrt{K_{b} \times [Base]_{init}} \end{split}$$
for weak acids in water: for weak based in water: (the above weak acid/base equations assume <5% ionization and assume no alternative source of common ions)

 $K_aK_b = 10^{-14}$ for a conjugate acid/base pair

Quadratic Equation:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1

- 1. Which of the following is <u>false</u> about a system at equilibrium:
 - a) The rate of the forward reaction becomes equal to the rate of the reverse reaction
 - b) So long as the equilibrium is not disturbed, the relative amounts of products and reactants present will not change no matter how long you wait
 - c) In an equilibrium situation, interconversion between reactants and products continues to occur.
 - d) The rate constant for the forward reaction becomes equal to the rate constant for the reverse reaction
- 2. Which of the following statements are true, regarding the equilibrium constant K for a reaction and the reaction quotient Q:
 - 1) If Q > K, the reaction is not at equilibrium, and will reach equilibrium by shifting some products over to reactants 2) If $K = 3.2 \times 10^{-6}$, the reaction is product favored 3) If $K = 5.2 \times 10^{4}$, the reaction is product favored

 - 4) If Q = K, the reaction is already at equilibrium.
 - a) 1 and 2 only
 - b) 1, 2, and 4 only
 - c) 1, 3, and 4 only
 - d) 3 and 4 only
 - e) 2 and 4 only
- 3. Which of the following statements are true regarding equilibrium constants for the following reaction:

$$2 \text{ NH}_3(g) \implies N_2(g) + 3 \text{H}_2(g) \qquad \Delta \text{H}^\circ = +92 \text{ kJ}$$

- a) Increasing the volume of the container will increase the equilibrium constant
- b) Increasing the temperature of the reaction will increase the equilibrium constant
- c) Increasing the volume of the container will increase the concentration of NH_3 (g)
- d) Increasing the concentration of $H_2(g)$ will increase the equilibrium constant
- e) Increasing the concentration of NH₃ (g) will increase the equilibrium constant

4. Identify the correct equilibrium expression for the following reaction.

$$A(aq) + 2B(aq) \implies C(aq) + D(s)$$

- a) $[A] [B]^2 / [C] [D]$ b) $[C] [D] / [A] [B]^2$ c) $[A] [B]^2 / [C]$ d) $[C] / [A] [B]^2$

- 5. For the following reaction, determine whether the system is at equilibrium when [CO] = 0.50M and $[CO_2] = 0.75$ M. The system ______ at equilibrium, because ______

$$C(s) + CO_2(g) \implies 2 CO(g)$$
 $K_c = 168$

2

- a) Is; the value of Q is 0.33
- b) Is not; the value of Q is 0.33

c) Is; the value of Q is 0.67

- d) Is not; the value of Q is 0.67
- e) More information is needed to answer this question
- 6. What is the equilibrium constant K_c for the following reaction, if at equilibrium $[C_4H_{10}] =$ 0.018 M, $[C_2H_6] = 0.035$ M, and $[C_2H_4] = 0.035$ M?

 $C_4H_{10}(g) \implies C_2H_6(g) + C_2H_4(g)$

- a) 0.068 b) 0.13 c) 14 d) 2.2 x 10⁻⁵
- 7. What is the equilibrium concentration of $N_2O(g)$ (in moles/liter), if at equilibrium $[N_2]$ = 0.048 M and $[O_2] = 0.093$ M?

$$2N_2(g) + O_2(g) \implies 2N_2O(g)$$
 $K_c = 1.5 \times 10^{-30}$

a) 8.2 x 10^{-17} b) 1.8 x 10⁻¹⁷ c) 4.7×10^{-27} d) 3.4×10^{-28} e) 3.2×10^{-34}

8. When 1.00 mol NH₃ (g) was placed into a 1 L container and allowed to reach equilibrium, the resulting mixture contained 0.60 mol NH₃ (g). How many moles of N₂ (g) and H₂ (g) are present at equilibrium?

 $2 \operatorname{NH}_3(g) \Longrightarrow \operatorname{N}_2(g) + 3\operatorname{H}_2(g)$

- a) 0.40 moles of N_2 ; 1.20 moles of H_2
- b) 0.80 moles of N_2 ; 2.40 moles of $H_2(g)$
- c) 0.20 moles of N_2 ; 0.60 moles of $H_2(g)$
- d) 0.80 moles of N_2 ; 0.27 moles of $H_2(g)$
- e) 0.20 moles of N_2 ; 0.40 moles of $H_2(g)$
- 9. 0.50 mol of I₂ (g) and 0.50 mol of Br₂ (g) are placed in a 1.00 L flask and allowed to reach equilibrium. At equilibrium, the flask contains 0.84 mol of IBr. What is the value of K_c for this reaction?

$$I_2(g) + Br_2(g) \Longrightarrow 2IBr(g)$$

- a) 11b) 4.0c) 110
- d) 6.1
- 10. When 0.70 mol NO₂ was placed in a 1.00 L flask and allowed to reach equilibrium, it's concentration was found to be 0.28 M, once equilibrium was established. Calculate K_c for this reaction.

$$2NO_2(g) \implies 2NO(g) + O_2(g)$$

- a) 1.9 b) 0.94
- c) 0.47
- d) 0.14
- 11. Calculate the equilibrium concentration of CO (g) and Cl₂ (g) if the initial concentration of COCl₂ (g) was 0.0627 M.

 $COCl_2(g) \implies CO(g) + Cl_2(g) \qquad K_c = 2.73 \times 10^{-10}$

a) $2.30 \times 10^8 \text{ M}$ b) $1.52 \times 10^{-4} \text{ M}$ c) $2.03 \times 10^{-3} \text{ M}$ d) $4.14 \times 10^{-6} \text{ M}$ e) $1.71 \times 10^{-11} \text{ M}$ 12. Consider the following reaction at equilibrium. Adding N_2 (g) to this reaction will:

$$2 \text{ NH}_3(g) \implies N_2(g) + 3H_2(g) \qquad \Delta H^\circ = +92 \text{ kJ}$$

- a) Decrease the concentration of NH_3 (g) at equilibrium
- b) Decrease the concentration of $H_2(g)$ at equilibrium
- c) Increase the value of the equilibrium constant
- d) Cause the reaction to shift to the right
- 13. Given the following equilibrium, which of the following statements is true?

$$C(s) + CO_2(g) \implies 2 CO(g)$$
 $\Delta H^\circ = +143 \text{ kJ}$

- a) An increase in temperature will cause a shift in the equilibrium position to the left
- b) An increase in the concentration of CO_2 (g) will cause the concentration of CO (g) to decrease
- c) An increase in the amount of carbon will cause the amount of CO (g) to increase
- d) An increase in temperature will make the equilibrium constant get larger
- e) A reduction in volume will cause a shift in the equilibrium position to the right
- 14. What would be the effect of reducing the volume for the following system, once equilibrium was reestablished:

$$N_2(g) + 3H_2(g) \implies 2 NH_3(g) \qquad \Delta H^\circ = +92 kJ$$

- a) Decrease the number of moles of NH_3 (g) at equilibrium
- b) Decrease the number of moles of H_2 (g) at equilibrium
- c) Decrease the value of the equilibrium constant
- d) Cause the reaction to shift to the left

15. The $[H^+]$ and pH of 0.021 M HNO₃ are:

- a) 4.8×10^{-13} M and 12.32
- b) 0.021 M and 12.32
- c) 0.021 M and 1.68
- d) 0.021 M and -1.68e) 4.8 x 10⁻⁶ M and 5.32

16. Calculate the hydronium ion concentration in a 0.012 M aqueous solution of NaOH.

a) $7.8 \times 10^{-4} M$ b) $5.5 \times 10^{-13} M$ c) $5.6 \times 10^{-11} \text{ M}$ d) $8.3 \times 10^{-13} \text{ M}$ e) none of the above 4

5

- 17. What is the $[OH^-]$ concentration of a solution with pH = 4.50?
 - a) $3.2 \times 10^{-5} M$ b) $8.2 \times 10^{-9} M$ c) $8.3 \times 10^{-10} M$ d) $3.2 \times 10^{-10} M$
 - e) none of the above
- 18. A 0.55 M solution of the weak acid HBrO has a pH of 4.48. What is the value of K_a for HBrO?
 - a) $2.0 \times 10^{-9} M$ b) $1.1 \times 10^{-9} M$ c) $6.0 \times 10^{-5} M$ d) $3.3 \times 10^{-5} M$

 - e) none of the above
- 19. Calculate the pH of 0.020 M hypochlorous acid, $K_a = 3.0 \times 10^{-8}$.
 - a) 2.45
 - b) -2.45
 - c) 3.60
 - d) 9.22
 - e) 4.61
- 20. The basicity constant K_b for $C_6H_5NH_2 = 4.3 \times 10^{-10}$. Calculate the pH of a 0.15 M solution of $C_6H_5NH_3^+$ in water.
 - a) 11.3
 - b) 8.6
 - c) 5.2
 - d) 2.7
 - e) none of the above
- 21. Calculate the pH of a 0.20 M solution of C₄H₅NH₂ in water. The basicity constant K_b for $C_4H_5NH_2 = 3.5 \times 10^{-6}$.
 - a) 3.1
 - b) 4.9
 - c) 10.9
 - d) 9.6
 - e) none of the above

22. The K_a for HF is 7.0 x 10^{-4} . What is the value of K_b for NaF?

a) 2.0×10^{-8} b) 1.4×10^{-11} c) 7.0×10^{-18} d) 1.4×10^{-10} e)

23. Calculate the pH of 0.374 M solution of NaNO₂ (K_a for HNO₂ = 4.5 x 10⁻⁴).

- a) 8.5
- b) 1.9
- c) 0.013
- d) 12.1
- e) none of the above
- 24. Which one of the following is the strongest acid?
 - a) CH₃COOH (K_a = 1.8×10^{-5})
 - b) HCOOH ($K_a = 1.0 \times 10^{-4}$) c) HCIO ($K_a = 3.0 \times 10^{-8}$) d) HF ($K_a = 6.8 \times 10^{-8}$)
- 25. What is the conjugate acid of $C_4H_7NH_2$?
 - a) $C_4H_7NH^+$
 - b) C₄H₇NH⁻
 - c) C₄H₇NH₃
 - d) $C_4H_7NH_3$

26. Which one of the following 0.1 M solutions would have a pH of 7.0?

- a) Na₂S
- b) CoCl₃
- c) NaNO₃
- d) NH₄Cl
- e) None of these

27. Given the K_a values shown, which one of the anions shown is the strongest base?

CH₃COOH (
$$K_a = 1.8 \ge 10^{-5}$$
)HCOOH ($K_a = 1.0 \ge 10^{-4}$)HClO ($K_a = 3.0 \ge 10^{-8}$)HF ($K_a = 6.8 \ge 10^{-4}$)

a) CH₃COO⁻ b) HCOO

- c) ClO
- d) F

28. For the reaction shown, which of the following statements would be false?

$$H_2CO_3(aq) + CH_3COO^{-}(aq) \implies CH_3COOH(aq) + HCO_3^{-}(aq) \quad K = 2.3 \times 10^{-2}$$

- a) CH₃COOH is the strongest acid
- b) HCO₃ anion is the strongest base
- c) H_2CO_3 is the strongest acid
- d) The solution will contain more H_2CO_3 than CH_3COOH at equilibrium

29. Which of the following would give an acidic solution in water?

- a) NaCN
- b) KF
- c) NH₃
- d) CH₃COOH

30. Rank the relative basicity of NH₃, OH⁻, F⁻, HSO₄⁻, given the following acidity data:

 NH_4^+ (K_a = 1.8 x 10⁻⁵) HF (K_a = 7.2 x 10⁻⁴)

- a) $OH^2 > NH_3 > HSO_4^2 > F^2$
- b) $OH^- > F^- > NH_3 > HSO_4^-$
- c) $HSO_4^- > F^- > NH_3 > OH^-$
- d) $OH^- > NH_3 > F^- > HSO_4^-$
- e) None of the above

31. Which of the following would not give an acidic solution?

- a) H₂S
- b) NH4Cl
- c) NaNO₂
- d) FeCl₃
- e) None of these

32. Which of the following acidity relationships is true?

a) $H_2SO_3 > H_2SO_4$ b) $H_2PO_4 > HPO_4^{2-}$ c) $HF > HCIO_4$ d) $H_2CO_3 > HNO_3$ e) None of these

33. For the reaction shown, which of the following statements would be *false*?

 $H_2SO_3(aq) + HS^{-}(aq) \implies HSO_3^{-}(aq) + H_2S(aq)$

- a) H_2SO_3 and H_2S are acids
- b) HS⁻ and HSO₃⁻ are bases
- c) The equilibrium will favor the side with the weaker acid and the weaker base
- d) H_2SO_3 and HS^- are a conjugate acid/base pair

Jasperse Chem 210 Answers, Test2 Version 2

- 1. D 2. C 3. B 4. D 5. B 6. A 7. B 8. C 9. C 10. C 11. D 12. B 13. D 14. B 15. C 16. D 17. D 18. A 19. E 20. D 21. C 22. B 23. A 24. D 25. D 26. C 27. C 28. C 29. D
- 30. D
- 31. C 32. B
- 33. D